7x+3x^2=1625

Simple and best practice solution for 7x+3x^2=1625 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x+3x^2=1625 equation:


Simplifying
7x + 3x2 = 1625

Solving
7x + 3x2 = 1625

Solving for variable 'x'.

Reorder the terms:
-1625 + 7x + 3x2 = 1625 + -1625

Combine like terms: 1625 + -1625 = 0
-1625 + 7x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-541.6666667 + 2.333333333x + x2 = 0

Move the constant term to the right:

Add '541.6666667' to each side of the equation.
-541.6666667 + 2.333333333x + 541.6666667 + x2 = 0 + 541.6666667

Reorder the terms:
-541.6666667 + 541.6666667 + 2.333333333x + x2 = 0 + 541.6666667

Combine like terms: -541.6666667 + 541.6666667 = 0.0000000
0.0000000 + 2.333333333x + x2 = 0 + 541.6666667
2.333333333x + x2 = 0 + 541.6666667

Combine like terms: 0 + 541.6666667 = 541.6666667
2.333333333x + x2 = 541.6666667

The x term is 2.333333333x.  Take half its coefficient (1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
2.333333333x + 1.361111112 + x2 = 541.6666667 + 1.361111112

Reorder the terms:
1.361111112 + 2.333333333x + x2 = 541.6666667 + 1.361111112

Combine like terms: 541.6666667 + 1.361111112 = 543.027777812
1.361111112 + 2.333333333x + x2 = 543.027777812

Factor a perfect square on the left side:
(x + 1.166666667)(x + 1.166666667) = 543.027777812

Calculate the square root of the right side: 23.302956418

Break this problem into two subproblems by setting 
(x + 1.166666667) equal to 23.302956418 and -23.302956418.

Subproblem 1

x + 1.166666667 = 23.302956418 Simplifying x + 1.166666667 = 23.302956418 Reorder the terms: 1.166666667 + x = 23.302956418 Solving 1.166666667 + x = 23.302956418 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = 23.302956418 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = 23.302956418 + -1.166666667 x = 23.302956418 + -1.166666667 Combine like terms: 23.302956418 + -1.166666667 = 22.136289751 x = 22.136289751 Simplifying x = 22.136289751

Subproblem 2

x + 1.166666667 = -23.302956418 Simplifying x + 1.166666667 = -23.302956418 Reorder the terms: 1.166666667 + x = -23.302956418 Solving 1.166666667 + x = -23.302956418 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = -23.302956418 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = -23.302956418 + -1.166666667 x = -23.302956418 + -1.166666667 Combine like terms: -23.302956418 + -1.166666667 = -24.469623085 x = -24.469623085 Simplifying x = -24.469623085

Solution

The solution to the problem is based on the solutions from the subproblems. x = {22.136289751, -24.469623085}

See similar equations:

| -4m-12+7+5m=21 | | (3-y)+7y= | | (3x+8)(6x+9)=0 | | (9z+2)(8z+6)=0 | | 4p+2=-12 | | 8x*5y= | | 4x+(-7x)= | | 2x-5=7+5 | | x^2+22x+c= | | (X+2)*0.45=14.40 | | (X-2)*0.45=14.40 | | (X-2)*0.45=4.40 | | m+5-3m-1=-6m-8 | | -9x+20x= | | X-2*0.45=4.40 | | 3b-4b+6= | | 9(x-2)=-2x-8+11x | | 81s^2+126s=49 | | 16*y+4*y=3600 | | 4a-7whena=2 | | 6p^2=-16p-8 | | x^2+8(x)+1=0 | | 0.03y+0.13(600-y)=0.4y | | 13y=99 | | (X+1)(x-6)(7-14x)=0 | | 19+4y=9+y | | 4y^2+x^2=0 | | ln^2(x)+3ln(x)+2=0 | | 7x-15x+4=0 | | 2ln^2(x)+3ln(x)+2=0 | | 5xy-2=7xy-10+6x | | 58(136-X)=-70 |

Equations solver categories